### Essay preview

Appendix A.4

Rational Expressions

A39

A.4 RATIONAL EXPRESSIONS

What you should learn

• Find domains of algebraic

expressions.

• Simplify rational expressions.

• Add, subtract, multiply, and divide

rational expressions.

• Simplify complex fractions and

rewrite difference quotients.

Domain of an Algebraic Expression

The set of real numbers for which an algebraic expression is defined is the domain of the expression. Two algebraic expressions are equivalent if they have the same domain and yield the same values for all numbers in their domain. For instance, ͑x ϩ 1͒ ϩ ͑x ϩ 2͒ and 2x ϩ 3 are equivalent because

͑x ϩ 1͒ ϩ ͑x ϩ 2͒ ϭ x ϩ 1 ϩ x ϩ 2

ϭxϩxϩ1ϩ2

Why you should learn it

Rational expressions can be used to

solve real-life problems. For instance,

in Exercise 102 on page A48, a rational

expression is used to model the

projected numbers of U.S. households

banking and paying bills online from

2002 through 2007.

ϭ 2x ϩ 3.

Example 1

Finding the Domain of an Algebraic Expression

a. The domain of the polynomial

2x 3 ϩ 3x ϩ 4

is the set of all real numbers. In fact, the domain of any polynomial is the set of all real numbers, unless the domain is specifically restricted.

b. The domain of the radical expression

Ίx Ϫ 2

is the set of real numbers greater than or equal to 2, because the square root of a negative number is not a real number.

c. The domain of the expression

xϩ2

xϪ3

is the set of all real numbers except x ϭ 3, which would result in division by zero, which is undefined.

Now try Exercise 7.

The quotient of two algebraic expressions is a fractional expression. Moreover, the quotient of two polynomials such as

1

,

x

2x Ϫ 1

,

xϩ1

or

x2 Ϫ 1

x2 ϩ 1

is a rational expression.

Simplifying Rational Expressions

Recall that a fraction is in simplest form if its numerator and denominator have no factors in common aside from ± 1. To write a fraction in simplest form, divide out common factors.

a

b

и c ϭ a,

иc b

c

0

A40

Appendix A

Review of Fundamental Concepts of Algebra

The key to success in simplifying rational expressions lies in your ability to factor polynomials. When simplifying rational expressions, be sure to factor each polynomial completely before concluding that the numerator and denominator have no factors in common.

Example 2

WARNING / CAUTION

In Example 2, do not make the

mistake of trying to simplify

further by dividing out terms.

xϩ6 xϩ6

ϭ

ϭxϩ2

3

3

Remember that to simplify

fractions, divide out common

factors, not terms.

Write

Simplifying a Rational Expression

x 2 ϩ 4x Ϫ 12

in simplest form.

3x Ϫ 6

Solution

x2 ϩ 4x Ϫ 12 ͑x ϩ 6͒͑x Ϫ 2͒

ϭ

3x Ϫ 6

3͑x Ϫ 2͒

ϭ

xϩ6

,

3

x

Factor completely.

2

Divide out common factors.

Note that the original expression is undefined when x ϭ 2 (because division by zero is undefined). To make sure that the simplified expression is equivalent to the original expression, you must restrict the domain of the simplified expression by excluding the value x ϭ 2.

Now try Exercise 33.

Sometimes it may be necessary to change the sign of a factor by factoring out ͑Ϫ1͒ to simplify a rational expression, as shown in Example 3.

Example 3

Write

Simplifying Rational Expressions

12 ϩ x Ϫ x2

in simplest form.

2x2 Ϫ 9x ϩ 4

Solution

12 ϩ x Ϫ x2

͑4 Ϫ x͒͑3 ϩ x͒

ϭ

2x2 Ϫ 9x ϩ 4 ͑2x Ϫ 1͒͑x Ϫ 4͒

ϭ

Factor completely.

Ϫ ͑x Ϫ 4͒͑3 ϩ x͒

͑2x Ϫ 1͒͑x Ϫ 4͒

ϭϪ

3ϩx

, x

2x Ϫ 1

4

͑4 Ϫ x͒ ϭ Ϫ ͑x Ϫ 4͒

Divide out common factors.

Now try Exercise 39.

In this text, when a rational expression is written, the domain is usually not listed with the expression. It is implied that the real numbers that make the denominator zero are excluded from the expression. Also, when performing operations with rational expressions, this text follows the convention of listing by the simplified expression all values of x that must be specifically excluded from the domain in order to make the domains of the simplified and original expressions agree. In Ex...

### Read more

### Keywords

*+2*

*+4*

*+5*

*0*

*0.002*

*0.01*

*0.3*

*0.61*

*000*

*1*

*1.0*

*10*

*100*

*101*

*102*

*103*

*104*

*105*

*106*

*10x*

*10y*

*11*

*11x*

*12*

*120*

*12n*

*13*

*13.7*

*14*

*1439049084*

*14x*

*15*

*15x*

*16*

*16t*

*17*

*17.4*

*18*

*18y*

*19*

*1n*

*1͑x*

*1͒*

*1͒1͞2*

*1͒2*

*1͒3͞2*

*1͒͑x*

*1͒ϫ1͞2*

*1͒ϫ4*

*1͒ϫ5*

*1ϫ*

*1ϫx*

*1и2*

*2*

*20*

*20.9*

*2002*

*2003*

*2004*

*2005*

*2006*

*2007*

*21*

*21.9*

*22*

*23*

*23.81*

*23.9*

*231926*

*24*

*24͑nm*

*25*

*25x*

*25͑x*

*25͒*

*26*

*26.7*

*26.8*

*27*

*28*

*29*

*29.1*

*2n*

*2x*

*2x1͒*

*2x2*

*2x3*

*2x͑1*

*2x͑2x*

*2x͑x*

*2x͒*

*2x͒1͔*

*2x͒ϫ1͞2*

*2x͒ϫ3͞2*

*2x͒ϫ3͞2͓*

*2x͒ϫ3͞2͓x*

*2xϫ2*

*2xϫ3͞2*

*2xϫ3͞2ϫ*

*2y*

*2z*

*2͑4*

*2͑x*

*2͒*

*2͒1*

*2͒1͞2*

*2͒͑x*

*2͒͑x2*

*2͒ϫ1͞2*

*2ίx*

*2ϫx*

*2и4*

*3*

*30*

*31*

*31.5*

*32*

*33*

*34*

*35*

*35.0*

*36*

*37*

*38*

*39*

*3x*

*3x1͞3*

*3x2*

*3xy*

*3x͒͑x*

*3xϫ2͞3*

*3xϫ5͞2*

*3y*

*3͑*

*3͑1*

*3͑2x*

*3͑3*

*3͑x*

*3͑x͒*

*3͑x͒͑x*

*3͒*

*3͒͑3x*

*3͒͑x*

*3͒͑x͒*

*3͞2*

*3ϩx*

*3ϫx*

*3и3*

*3и4*

*4*

*4.39*

*40*

*40.0*

*40њf*

*41*

*42*

*43*

*44*

*45*

*45.0*

*46*

*47*

*475*

*48*

*49*

*4t*

*4x*

*4x2*

*4y*

*4͑x*

*4͒*

*4͒͑3*

*4ϫy*

*4и3*

*5*

*5.5*

*50*

*51*

*52*

*525*

*53*

*54*

*55*

*56*

*57*

*58*

*59*

*5x*

*5x3*

*5xϫ3*

*5y*

*5͑*

*5͑x*

*5͒*

*5͒͑x*

*5͒ϫ3*

*5͒ϫ4*

*5͞2*

*5ϫx*

*6*

*60*

*60y*

*61*

*62*

*63*

*64*

*65*

*66*

*67*

*68*

*69*

*6t*

*6x*

*6͑x*

*6͒͑x*

*6ϫx*

*6и2*

*7*

*70*

*71*

*72*

*73*

*74*

*75*

*75њf*

*76*

*77*

*78*

*79*

*7x*

*7y*

*8*

*80*

*81*

*82*

*83*

*84*

*85*

*86*

*87*

*88*

*89*

*8x*

*8y*

*9*

*90*

*91*

*92*

*93*

*94*

*95*

*96*

*97*

*98*

*99*

*9x*

*a.1*

*a.2*

*a.4*

*a39*

*a40*

*a41*

*a42*

*a43*

*a44*

*a45*

*a46*

*a47*

*a48*

*abil*

*actual*

*ad*

*add*

*addit*

*advantag*

*agre*

*air*

*algebra*

*also*

*amount*

*analysi*

*annual*

*anoth*

*answer*

*appear*

*appendix*

*appli*

*applic*

*approach*

*approxim*

*area*

*asid*

*b*

*bank*

*base*

*basic*

*bc*

*bd*

*begin*

*bill*

*blank*

*box*

*c*

*calculus*

*call*

*capston*

*car*

*case*

*caution*

*chang*

*circul*

*color*

*combin*

*come*

*common*

*compar*

*complet*

*complex*

*concept*

*conclud*

*consid*

*consist*

*contain*

*convent*

*cool*

*copi*

*copier*

*correspond*

*creat*

*d*

*data*

*defin*

*definit*

*degre*

*denomin*

*depend*

*describ*

*determin*

*differ*

*digit*

*discuss*

*distribut*

*divid*

*divis*

*divisor*

*domain*

*done*

*effici*

*emarket*

*equal*

*equival*

*error*

*estim*

*evalu*

*exampl*

*except*

*exclud*

*exercis*

*experi*

*explain*

*explor*

*expon*

*express*

*fact*

*factor*

*fahrenheit*

*fals*

*figur*

*fill*

*financ*

*find*

*fiveyear*

*follow*

*food*

*form*

*formula*

*forrest*

*four*

*four-year*

*fraction*

*frequent*

*fundament*

*geometri*

*give*

*given*

*greater*

*group*

*h*

*highest*

*hour*

*household*

*h͑ίx*

*h͒2*

*illustr*

*impli*

*import*

*instal*

*instanc*

*interact*

*interest*

*interpret*

*invert*

*involv*

*job*

*justifi*

*key*

*lcd*

*learn*

*least*

*lie*

*life*

*like*

*list*

*loan*

*m*

*make*

*manag*

*marbl*

*mathemat*

*may*

*method*

*million*

*minut*

*miss*

*mistak*

*model*

*money*

*month*

*moreov*

*multipl*

*multipli*

*must*

*n*

*necessari*

*need*

*negat*

*next*

*nm*

*note*

*notic*

*number*

*numer*

*occur*

*occurr*

*odd*

*odd-numb*

*often*

*one*

*onlin*

*oper*

*order*

*origin*

*p*

*page*

*part*

*pay*

*payment*

*per*

*perform*

*place*

*polynomi*

*portion*

*possibl*

*power*

*prime*

*probabl*

*problem*

*product*

*project*

*properti*

*provid*

*p͒*

*quantiti*

*quotient*

*r*

*r2*

*radic*

*rate*

*ratio*

*ration*

*real*

*real-lif*

*recal*

*refriger*

*rememb*

*remov*

*repeat*

*repres*

*requir*

*research*

*respect*

*rest*

*restrict*

*result*

*review*

*rework*

*rewrit*

*rewritten*

*room*

*root*

*rϫ1*

*second*

*see*

*separ*

*set*

*sever*

*shade*

*show*

*shown*

*sign*

*simpler*

*simplest*

*simplifi*

*singl*

*skill*

*smaller*

*solut*

*solv*

*sometim*

*sourc*

*specif*

*squar*

*statement*

*subtract*

*success*

*sure*

*t2*

*tabl*

*task*

*techniqu*

*temperatur*

*term*

*text*

*think*

*three*

*time*

*togeth*

*toss*

*total*

*tri*

*true*

*two*

*type*

*t͞3*

*t͞5*

*tϩ3*

*u.s*

*undefin*

*unless*

*use*

*usual*

*valu*

*vocabulari*

*warn*

*way*

*well*

*whether*

*whose*

*word*

*work*

*worked-out*

*worker*

*would*

*write*

*written*

*www.calcchat.com*

*x*

*x2*

*x3*

*x4*

*x5*

*xx*

*xy*

*x͑1*

*x͑3x*

*x͑6*

*x͑x*

*x͒*

*x͒͑3*

*xϩ1*

*xϩ2*

*xϩ3*

*xϩ6*

*xϩ7*

*xϩh*

*xϩhϩ1*

*xϩhϫ4*

*xϫ1*

*xϫ2*

*xϫ2͞3*

*xϫ3*

*xϫ4*

*xϫ5*

*xϫ5͞2*

*xϫ5͞2͑3*

*xϫ5͞2͓3͑1͒*

*y*

*y3*

*year*

*yield*

*yϩ4*

*z*

*z3*

*zero*

*ί2x*

*ί3*

*ί4*

*ί4x*

*ί5*

*ίt*

*ίx*

*ίz*

*θp*

*ι*

*ϩ*

*ϩ1*

*ϩx*

*ϫ*

*ϫ0.049t2*

*ϫ0.728t2*

*ϫ1*

*ϫ1͒*

*ϫ1͞2*

*ϫ2*

*ϫ2x*

*ϫ2͑x*

*ϫ3͞2*

*ϫ4*

*ϫ5*

*ϫ5͞2͔͒*

*ϫx*

*ϫϫ*

*ϭ*

*ϭxϩ2*

*ϭxϩxϩ1ϩ2*

*ϭϫ*

*и*

*иc*

*иxϫ2*

*ն*