### Essay preview

Artificial Intelligence

Course Code: ECE434

UNIT -III

References

Text

1. “Artificial Intelligence” Saroj Kaushik 1st Edition Cengage Learning 2011

Reference Books

2. “Introduction to Artificial Intelligence and Expert Systems” Dan. W. Patterson 1st Edition 1990 PHI

(Pretice Hall India).

3. “Artificial Intelligence- A Modern Approach”

Stuart Russel Peter Norvig 3rd Edition Pearson, 2009 .

4. “Artificial Intelligence” Elaine Rich Kevin Knight 3rd Edition 2008 Tata McGraw Hill, India

INTRODUCTION TO LOGIC CONCEPTS &

LOGIC PROGRAMMING

Logic was to be a branch of philosophy;

however formal logic has been studied in the

context of foundation of mathematics where it

is referred to as symbolic logic.

Logic is concerned with the principles of

drawing valid inferences from a given set of

true statements.

Hence, it is referred to as symbolic logic.

LOGIC

Logic is concerned with the truth of statements about the world.

Generally each statement is either TRUE or FALSE. Logic includes : Syntax , Semantics and Inference Procedure.

Syntax :

Specifies the symbols in the language about how they can be combined to form sentences. The facts about the world are represented as sentences in logic.

Semantic :

Specifies how to assign a truth value to a sentence based on its meaning in the world. It Specifies what facts a sentence refers to. A fact is a claim about the world, and it may be TRUE or FALSE.

Inference Procedure :

Specifies methods for computing new sentences from an existing sentences.

Branches of Symbolic logic

It is divided into 2 branches:

Propositional logic

Predicate logic

A Proposition refers to a declarative statement

that is either true or false (but not both) in a

given context.

One can infer a new proposition from a given

set of propositions in the same context using

logic.

Propositional Calculus

Propositional Calculus (PC) refers to a language

of propositions in which a set of rules are used

to combine simple propositions to form

compound propositions with the help of

certain logical operators.

These logical operators are also called as

connectives;

These operators are: not(~), or (v), and (^),

implies ( ), and equivalence (

).

Well-formed formula (wff)

A wff is defined is defined as a symbol or a string

of symbols generated by the formal grammar of a

formal language of a formal language.

Properties of wff:

The smallest unit (or an atom) is considered to be

al w...

### Read more

### Keywords

*1*

*15692*

*1990*

*1rule*

*1st*

*2*

*2008*

*2009*

*2011*

*3*

*32*

*3rd*

*4*

*5*

*6*

*a1*

*a2*

*absorpt*

*ad*

*add*

*advantag*

*ai*

*al*

*allow*

*also*

*among*

*apart*

*approach*

*appropri*

*argument*

*artifici*

*assign*

*associ*

*atom*

*automat*

*ava*

*avb*

*axiom*

*axiomat*

*b*

*backward*

*base*

*basi*

*better*

*binari*

*bind*

*book*

*boolean*

*branch*

*built*

*bva*

*bvc*

*c*

*calcul*

*calculus*

*call*

*cannot*

*case*

*cengag*

*certain*

*chain*

*check*

*claim*

*claus*

*clausal*

*cnf*

*code*

*collect*

*combin*

*comment*

*common*

*commut*

*complimentari*

*compound*

*comput*

*concept*

*concern*

*condit*

*conjunct*

*connect*

*consequ*

*consid*

*consist*

*constant*

*construct*

*contain*

*context*

*contradict*

*convers*

*convert*

*cours*

*d*

*dan*

*de*

*deal*

*declar*

*deduc*

*deduct*

*defin*

*definit*

*delet*

*deriv*

*describ*

*descript*

*determin*

*develop*

*difficult*

*direct*

*disadvantag*

*disjunct*

*distribut*

*divid*

*dnf*

*doubl*

*draw*

*due*

*e*

*easi*

*ece434*

*edit*

*either*

*elain*

*elimin*

*english*

*enough*

*equival*

*establish*

*evalu*

*exampl*

*exclud*

*exist*

*expert*

*exponenti*

*express*

*extens*

*f*

*fact*

*fals*

*favour*

*fig*

*finit*

*follow*

*form*

*formal*

*formula*

*forward*

*foundat*

*g*

*general*

*generat*

*get*

*given*

*goal*

*grammar*

*grandmoth*

*ground*

*grow*

*guess*

*hall*

*help*

*henc*

*hill*

*homework*

*howev*

*humid*

*hypothesi*

*idea*

*idempot*

*iii*

*immedi*

*impli*

*import*

*includ*

*inconsist*

*india*

*infer*

*inferenc*

*input*

*instanc*

*intellig*

*interpret*

*introduc*

*introduct*

*kaushik*

*kevin*

*knight*

*languag*

*law*

*learn*

*least*

*let*

*liter*

*logic*

*man*

*mani*

*mari*

*mathemat*

*may*

*mcgraw*

*mean*

*mechan*

*men*

*method*

*middl*

*mike*

*mimic*

*modern*

*modus*

*morgan*

*mortal*

*mp*

*n1*

*name*

*natur*

*nds*

*need*

*negat*

*new*

*nj*

*normal*

*norvig*

*notat*

*nt*

*object*

*often*

*one*

*oper*

*order*

*output*

*p*

*p1*

*pair*

*part*

*pattern*

*patterson*

*pc*

*pearson*

*peter*

*phi*

*philosophi*

*pi*

*pk*

*pl*

*ponen*

*posit*

*power*

*predic*

*pretic*

*principl*

*procedur*

*produc*

*program*

*proof*

*properti*

*proposit*

*prove*

*provid*

*push*

*q*

*quantifi*

*queri*

*rain*

*reason*

*reduc*

*refer*

*refut*

*relat*

*relationship*

*remain*

*repres*

*requir*

*resolut*

*resolv*

*rich*

*root*

*row*

*rule*

*russel*

*said*

*saroj*

*satisfi*

*scope*

*select*

*semant*

*sentenc*

*set*

*show*

*shown*

*sign*

*simpl*

*sinc*

*singl*

*situat*

*size*

*smallest*

*socrat*

*solut*

*solv*

*special*

*specifi*

*standard*

*statement*

*straightforward*

*string*

*stuart*

*studi*

*symbol*

*syntax*

*system*

*tabl*

*tableau*

*take*

*tata*

*tautolog*

*techniqu*

*term*

*text*

*theorem*

*therefor*

*time*

*today*

*togeth*

*tree*

*true*

*truth*

*two*

*u*

*uniqu*

*unit*

*unsatisfi*

*upon*

*us*

*use*

*usual*

*v*

*valid*

*valu*

*variabl*

*various*

*w*

*wastag*

*well*

*well-form*

*wff*

*whether*

*world*

*written*

*x*

*y*

*α*

*α1*

*α2*

*αn*

*β*

*ϒ*

*і*